
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Soil Dynamics and Earthquake Engineering 28 (2008) 621–631

Response of pendulums to complex input ground motion

Vladimir Graizer�, Erol Kalkan

California Geological Survey, 801K Street, MS 12-32 Sacramento, CA 95814, USA

Received 23 February 2007; received in revised form 2 August 2007; accepted 29 September 2007

Abstract

Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via

response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input

from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but

also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described:

(i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of

complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in

strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to

idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For

better understanding of the inverted pendulum’s dynamic behavior under complex ground excitation, relative contribution of each

component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical

component of motion may create time-dependent variations on pendulum’s oscillation period; yet most dramatic impact on response is

produced by the tilting (rocking) component.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Movement of the ground produced by an earthquake is a
combination of translational and rotational motions.
Many types of seismic waves propagating in the media
create both translational and rotational excitations. For
example, propagating Rayleigh waves can create significant
rocking (tilting), and Love waves can create torsional
excitations of the ground surface (e.g., Trifunac [1]). In
mean time, traditional seismology and engineering practice
consider only translational motions. Since 1970s, a number
of attempts were made to measure or estimate rotational
component of strong ground motion, but still there are no
consistent measurements of rotations together with trans-
lational motion. According to theoretical and recent
experimental data, rotational motions generated by an
earthquake source can be significant in the near-fault area

and reach up to 10�4 rad (e.g., [2–4]). Higher amplitude tilts
in the order of up to10�2 rad resulting from local site
effects induced by strong ground shaking were also
reported [5,6].
Conventional seismometer (velocimeter or acceler-

ometer) records ground shaking during an earthquake via
its classical pendulum setup composed of an inertial mass
usually suspended in a frame by a combination of a spring,
and a damper. This setup is aimed to prevent long-term
oscillations in response to shaking, thereby acts as a
physical low-cut filter. Similar to pendulums used in a
typical seismometer, a number of engineering structures’
response to earthquakes can be represented by the response
of a SDOF oscillator (i.e., pendulum). Classically, response
of an elastic SDOF oscillator in a seismometer is described
by the ordinary differential equation of the second order:

y00 þ 2onDny0 þ o2
ny ¼ �x00, (1)

where y is the recorded response of the instrument, ln is the
length of pendulum arm, y is the angle of pendulum
rotation from the equilibrium, y=yln for small angles of y,
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on and Dn are, respectively, the natural circular frequency
and fraction of critical damping of the oscillator, x00 is the
ground motion acceleration.

Close-form solutions of Eq. (1) in time-domain for
various damping ratios are given by the Duhamel’s
integral [7]:

yðtÞ ¼
1

lnnn

Z t

0

exp½�onDnðt� tÞ�x00ðtÞ

� sin½nnðt� tÞ�dt; Dno1,

yðtÞ ¼
1

ln

Z t

0

exp½�onDnðt� tÞ�x00ðtÞdt; Dn ¼ 1,

yðtÞ ¼
1

lnn̄n

Z t

0

exp½�onDnðt� tÞ�x00ðtÞ

� sh½n̄nðt� tÞ�dt; Dn41, ð2Þ

where nn ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2

n

q
for Dno1, and n̄n ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

n � 1
q

for Dn41. Parameter nn is also called damped natural
frequency since it is the frequency at which under-damped
SDOF system oscillates freely. Most instruments (accel-
erometers and seismometers) used in seismology have
damping ratio about 0.6–0.7, whereas many structural
systems’ damping ratio remains lower than 0.1. Typical
velocimeters have damping ratio of Dnb1. The solutions
given via Eq. (2) are valid for small angles (y) of
pendulum’s relative rotation assuming that there are no
rotations and tilts of the pendulum base.

1.1. Types of pendulum

According to terminology commonly used in seismology
and followed in this paper, a horizontal pendulum is a
pendulum sensitive to the horizontal input ground motion,
and a vertical pendulum is sensitive to the motion along the
vertical axis. In this study, the following three types of
horizontal pendulums are considered:

1. Mass-on-rod type pendulum: oscillating in a horizontal
plane with rotation axis being vertical (most seismic
instruments are of this type) (Fig. 1).

2. Mass-on-spring type pendulum: oscillating in a hori-
zontal plane (Fig. 2).

3. Inverted (astatic) mass-on-rod type pendulum: oscillat-
ing in a vertical plane around the horizontal axis
(Fig. 3). Classical Wiechert’s horizontal seismograph
built around 1905 and still used at some seismological
observatories represents an inverted pendulum. Numer-
ous engineering structures including buildings, elevated
water tanks, tower cranes, communication towers,
poles etc. can also be idealized as a pendulum of this
type.

The responses of vertical pendulums of the first two
types are also considered in the course of this study. Note
that mass-on-rod type vertical pendulum is oscillating
around a horizontal axis of rotation. The theory of
pendulums described in this paper is applicable for small
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Fig. 1. Mass-on-rod pendulum and its response to complex ground motion (note: x1 and x2 lie in horizontal plane).
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oscillations assuming that pendulum’s declination from the
equilibrium does not exceed few degrees. As a first
approximation, Eq. (1) is sufficient to describe the behavior

of all above-mentioned types of pendulum including
vertical and horizontal.

1.2. Configuration of sensors in seismological instruments

Standard configuration of sensors in seismological
measurements includes three instruments: two sensors are
oriented horizontally perpendicular to each other and the
third sensor is oriented vertically representing Cartesian
coordinate system. The second configuration commonly
used for petroleum exploration is so-called Galperin’s or
symmetric configuration [8] developed as a tool for three-
component borehole studies. In this configuration, the
three sensors are also positioned orthogonally with respect
to each other, but all three sensors are tilted at the same
angle to the vertical axis (triaxial system of coordinate
balanced on its corner). This configuration ensures that
each of the three identical, single-component sensors
respond equally to gravity. Sensors are mounted at an
angle of 35.31 to the horizontal in vertical plane (54.71 to
the vertical axis) and at 1201 relative to each other in
horizontal plane (azimuths between sensors are 1201
relative to each other. Advantage of this configuration is
that all three sensors could be identical in design. Records
obtained using Galperin’s configuration must be rotated
into an earth referenced X, Y, Z coordinate system. The
disadvantage of this configuration is that if one of the
sensors is not working properly, it results in degradation of
all three components measured.
Most seismological instruments are using standard

(East, North, Up) configuration (e.g. Streckeisen STS-1
and Guralp CMG-3T). But some seismometers (e.g.
Streckeisen STS-2, Trillium of Nanometrics and Cronos
of Kinemetrics) adopted Galperin’s configuration. In this
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paper, classical configuration is considered solely due to its
more common applications.

2. Complete equation of small motion of pendulums

2.1. Complete equations of conventional pendulum motion

Most of the seismological sensors (seismometers and
accelerometers) used in conventional seismological instru-
ments are pendulums of the mass-on-rod type (Fig. 1).
Accordingly, complete equation of small oscillations (i.e.
sin yffiy) of the horizontal pendulum shown in Fig. 1 can
be expressed as

y001 þ 2o1D1y
0
1 þ o2

1y1 ¼ �x001 þ ga� l1c
00
þ x002y1, (3)

where g is acceleration due to gravity, a is tilting of the
ground, and c is torsion (rotation around vertical axis).
The fourth term in Eq. (3) is usually called cross-axis
sensitivity (when pendulum is out of equilibrium, it is also
sensitive to the acceleration along the direction perpendi-
cular to the axis of sensitivity). Transferring the last term in
the right-hand side related to the angle of rotation of
pendulum (i.e. x002y1 ¼ output of the pendulum) to the
left-hand side of Eq. (3) yields:

y001 þ 2o1D1y
0
1 þ ðo

2
1 � x002=l1Þy1 ¼ �x001 þ ga� l1c

00. (4)

It should be noted that a horizontal pendulum sensitive to
translational acceleration is also sensitive to tilt ga, angular
acceleration lnc00, and acceleration along perpendicular
direction x002y1 [9,10].

Sensitivity of the vertical pendulum to tilts is propor-
tional to cos(a), thereby its contribution can be neglected
for small tilting angles. The resultant equation of motion of
a vertical pendulum can be written as

y003 þ 2o3D3y
0
3 þ o2

3y3 ¼ �z00 � l3a00 þ x002y3, (5)

where z00 is acceleration in the vertical direction. Transfer-
ring cross-axis sensitivity to the left-hand side of Eq. (5)
results in

y003 þ 2o3D3y
0
3 þ ðo

2
3 � x002=l3Þy3 ¼ �z00 � l3a00. (6)

Note that a vertical pendulum is sensitive to vertical
motion and should not be confused with an inverted
pendulum that is sensitive to horizontal motion. While a
horizontal pendulum (Eq. (3)) is sensitive to the accelera-
tion of linear motion, tilt, angular acceleration, and cross-
axis excitations, a vertical pendulum is sensitive to the
acceleration of linear motion, angular acceleration, and
cross-axis excitations (Eq. (5)). Unfortunately, the com-
pleteness of representing equation of pendulum motion in
the seismological literature varies. For instance, Golitsyn
[11] does not take into account the cross-axis sensitivity,
while Aki and Richards [12] following Rodgers [13] do not
consider the angular acceleration term. Response of a
vertical pendulum and a horizontal pendulum oscillating in
a horizontal plane is considered in a number of publica-
tions (e.g. [9,14–17]). These studies show that the last terms

in the right side of Eqs. (3) and (5) (cross-axis sensitivity) is
relatively small and can be neglected in most applications.
In general, Eqs. (5) and (6) are non-linear, since the third

term in the left side of Eq. (5) is response parameter thus it
is time and amplitude dependent. In contrast to the linear
differential Eq. (1), the non-linear differential form of
Eqs. (4)–(6) do not have direct solutions. But for D151
and for o2

1bx002ðtÞ=l1 their solutions (similarly to the
solution (2) of Eq. (1)) can be approximated as

y1ðtÞ �
1

l1neff ðtÞ

Z t

0

exp½�oeff ðtÞD1ðt� tÞ�

� F ðtÞ sin½neff ðtÞðt� tÞ�dt, ð7Þ

where

F ðtÞ ¼ �x001ðtÞ þ gaðtÞ � l1c
00
ðtÞ,

oeff ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

1 � x002ðtÞ=l1

q
,

neff ðtÞ ¼ oeff ðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2

1

q
. ð8Þ

F(t) is a complex input forcing function and oeff(t) is
effective time dependent frequency function. Eqs. (7) and
(8) represent solutions for the horizontal sensor.
Solution of Eq. (6) for the vertical sensor is the same as

for the horizontal one, except for its forcing function:

F ðtÞ ¼ �z00ðtÞ � l3a00ðtÞ. (9)

It is important to underscore that those equations represent
elastic response of pendulums (as material behavior), with
non-linearity created by time and amplitude dependence of
equation coefficient.

2.2. Complete equations of mass-on-spring pendulum motion

Schematic representation of a mass-on-spring type
seismometer is shown in Fig. 2. It is assumed that mass
oscillates without friction. This type of pendulum is
commonly used in geophysical prospecting (geophone),
but it is also used in some accelerometers (e.g. SMACH
accelerograph made in Switzerland by GeoSIG). Complete
equation of this pendulum is similar to Eq. (3) except it is
not sensitive to torsional acceleration, and cross-axis
sensitivity is proportional to tilt of the base [9]:

y001 þ 2o1D1y
0
1 þ o2

1y1 ¼ �x001 þ gaþ x002a. (10)

Theoretically, centrifugal acceleration ac ¼ lnðc
0
Þ
2: also

contributes to the oscillations of the pendulum. Yet, it is
realistically of lower order and can be neglected, since
pendulum arm of this type of seismometer usually does not
exceed 20 cm and the highest angular velocity observed
during earthquakes does not exceed 0.2 rad/s [6].
Sensitivity of the vertical pendulum of the mass-on-

spring type to tilts is proportional to cos(a) and corre-
spondingly can be neglected for small tilt angles [9].
Consequently, equation of motions for a vertical sensor
can be simplified to

y003 þ 2o3D3y
0
3 þ o2

3y3 ¼ �z00 þ x002a. (11)
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Since cross-axis sensitivity term is proportional to tilt of
pendulum base (input signal), Eqs. (10) and (11) remain
linear. Realistically, mass-on-spring pendulums can also
demonstrate non-linearity as a result of non-constant
damping due to friction.

2.3. Complete equations of inverted pendulum motion

In this study, a special attention is devoted to the
inverted (astatic) pendulum (Fig. 3). Its response is
sensitive to the horizontal ground motion with horizontal
axis of rotation. Although this type of pendulum has
limited use in seismology, it has significant importance for
engineering applications where it is often used to simulate
the dynamic response of various structural systems. In case
of a complex input ground motion that includes tilting of
the base of pendulum (a), the complete equation of motion
takes the following form [18]:

y001 þ 2o1D1y
0
1 þ o2

1y1 ¼ � x001 þ ðgþ z00Þa

þ ðgþ z00Þy1 � l1a00, ð12Þ

where a00 is angular acceleration of tilt, and g is acceleration
due to gravity.

Note that input force in the right-hand side of Eq. (12)
has more entities than Eq. (4) of the conventional (mass-
on-rod) pendulum. An inverted pendulum is sensitive to
horizontal acceleration along the x-axis (first term in the
right-hand side of Eq. (12)), tilt of the base (second term),
additional tilt of pendulum due to gravity and vertical
acceleration (third term), and angular acceleration of tilting
(fourth term). Eq. (12) is an inclusive equation showing
response of an inverted pendulum to a complex ground
motion including translational and rotational components.
Moving the entities related to the relative rotation of
pendulum to the left-hand side reads the following
expression:

y001 þ 2o1D1y
0
1 þ ½o

2
1 � ðgþ z00Þ=l1�y1

¼ �x001 þ ðgþ z00Þa� l1a00. ð13Þ

Eq. (13) of an inverted pendulum and Eq. (4) of a
conventional pendulum used in seismometers demonstrate
the following differences:

1. The right-hand side of Eq. (13) and the response of an
inverted pendulum are dependent upon different set of
input functions than that of Eq. (4).

2. The non-linearity of Eq. (13) is much higher than that of
Eq. (4) because of gravity factor influencing the effective
frequency of oscillation (third term in the left-hand side
of Eq. (13)).

3. As shown in a number of studies [9,14–17] cross-axis
sensitivity can affect response of a conventional accel-
erometer only in conditions when amplitude of motions
in the direction x2, perpendicular to the main sensitivity
along the x1, direction is significantly higher than 1.0g.
Consequently, non-linearity in Eq. (4) only appears

when cross-axis amplitudes are extremely high. Because
of sensitivity of inverted pendulum to gravity, Eq. (13)
becomes linear only if o2

1b½gðtÞ þ z00ðtÞ�=l1. The higher is
the natural frequency of a pendulum the lower is the
non-linearity of Eq. (13). Non-linearity effect diminishes
for pendulums with longer arm assuming that natural
frequency remains unchanged.

Similar to Eq. (4), differential Eq. (13) is non-linear and
does not have direct solution. But for D151 and for
o2

1b½gðtÞ þ z00ðtÞ�=l1, its solution can be approximated by
using approach as given in Eq. (7):

y1ðtÞ �
1

l1neff ðtÞ

Z t

0

exp½�oeff ðtÞD1ðt� tÞ�

� F ðtÞ sin½neff ðtÞðt� tÞ�dt, ð14Þ

but with different forcing and effective frequency func-
tions:

F ðtÞ ¼ �x001ðtÞ þ ½gþ z00ðtÞ�aðtÞ � l1a00ðtÞ,

oeff ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

1 � ½gðtÞ þ z00ðtÞ�=l1

q
,

neff ðtÞ ¼ oeff ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2

1

q
. ð15Þ

Comparing solution (Eq. (14)) of Eq. (13) with solution
(Eq. (2)) of Eq. (1), one can detect two major differences:
(i) input motion becomes much more complex and
constant parameter natural frequency on is replaced by
the time-variant oscillation frequency oeff(t). Eq. (14) is
more complicated to study than Eq. (1) since it has added
complexity in the excitation function F(t) including vertical
acceleration, tilt and angular accelerations of tilt.
Effective frequency oeff(t) replaces the constant para-

meter o1 (natural frequency of pendulum). Right-hand side
of Eq. (15) is positive and real when

o2
14½gðtÞ þ z00ðtÞ�=l1.

Investigation of pendulum’s response to the complex
ground motion becomes important in application to the
strong ground shaking that generally happens in the near
field of an earthquake source. In the preceding sections, the
influence of different forcing functions in the right-hand
side of Eq. (13) on the outcomes of pendulum is system-
atically investigated. Particular attention is devoted to the
coupled effects of vertical acceleration and gravity on
response (variability of one of the coefficients in the left-
hand side of Eq. (13)).

3. Testing procedure for relative impacts of ground motion

components

As an input for testing the pendulums response, we use
corrected acceleration (Fig. 4) and tilt (Fig. 5) obtained
from the record of the Mw 6.7 Northridge earthquake of
1994 recorded at Pacoima Dam Upper left abutment
station by the California Strong Motion Instrumentation
Program [19,20]. Approximate method used to extract tilts
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from the three-component recorded accelerogram is based
on a difference in tilt sensitivity of vertical and horizontal
sensors and is described with details by Graizer [6].

3.1. Modeling accelerometer response

In the first series of numerical tests, we studied the
complex response of an accelerometer similar to one used in
SMA-1 (Fig. 6). Standard parameters of these sensors are:
natural frequency of about 25Hz (Tn ¼ 0.04 s), damping
ratio of Dn ¼ 0.65 and pendulum arm of ln�1.5 cm.

In order to study the effect for each of ground motion
components separately, the following computations and
comparisons were conducted:

1. The response of an oscillator to purely translational
motion equivalent to the solution of Eq. (1) was
computed.

2. The effect of cross-axis sensitivity x002y1 was considered
by taking into account time variations of the natural
frequency (Eqs. (7) and (8)).

3. Influence of angular acceleration lnc00 was considered.
4. Effect of tilt ga was included.

The numerical tests confirmed the results previously
shown in Graizer [9,14] that

1. Cross-axis sensitivity is practically very low even for
cross-axis acceleration of more than 1.0g. The difference
in amplitudes between purely translational response and
that of accounting for cross-axis input is less than 0.1%.
This effect is so low because o2

1bx002ðtÞ=l1 for an
accelerometer with 25Hz natural frequency. To make
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the effect of cross-axis sensitivity visible, acceleration
along the perpendicular direction is significantly ampli-
fied. Fig. 7(top) demonstrates the effect of cross-axis
sensitivity for the exaggerated intensities, when accel-

eration along the perpendicular axis was artificially
multiplied four times reaching maximum amplitude of
more than 5.0g. Even in such extreme case, the
difference is only visible in a few places without
exceeding 10%.

2. Effect of angular acceleration on an accelerometer response
is extremely low, since the length of pendulum arm is very
short. Even for relatively very high angular accelerations of
up to 601/s2 (�1 rad/s2) this effect is still invisible.

3. Tilt produces significant influence on response of
pendulum. Residual tilt resulting in a shift of final
position of pendulum (Fig. 7(bottom)) can be visually
recognized. This effect looks like a baseline shift. As
shown in Graizer [10] dynamic tilt introduces erroneous
long-period noise and makes calculations of residual
displacement impossible.

Modern accelerographs use sensors with standard
natural frequency of 50Hz and higher. Cross-axis sensi-
tivity for those instruments can be neglected even for
maximum acceleration up to about 8.0g. Such extreme
acceleration levels are only known to occur in the near-field
of explosions. Maximum known acceleration for earth-
quakes so far did not exceed 2.5g [21].
Performed tests demonstrate that accelerometers used in

seismological practice to record horizontal earthquake
strong ground motion are sensitive to acceleration and tilt.
Vertical accelerometers are only sensitive to the vertical
translational acceleration. Parasitic cross-axis and angular
acceleration sensitivities can practically be ignored. In the
mean time, accelerograms are integrated once and twice to
get velocities and displacements and those parasitic
sensitivities can become additional sources of errors in
strong-motion data processing.
Compared to accelerometers, seismometers are used in

seismological practice to record teleseismic events with
relatively low amplitudes of ground motion. Seismometers
are usually characterized by relatively long natural period
of about 5 s (0.2Hz), damping ratio of �0.6–0.7 with
relatively long pendulum arm of the order of 1.0m and
longer. Testing the response of those instruments to the
complex realistic input motion is beyond the scope of this
study. Since pendulum arm of a seismometer is much
longer than that of an accelerometer, effect of angular
acceleration can become important. Residual tilt will result
in a shift of baseline (similar to the effect produced to the
record of an accelerometer).
Since some seismological instruments have Galperin’s

configuration of sensors it is also important to consider the
effects of complex input ground motion including tilt on
their responses, but this task is also left beyond the scope of
this study.

3.2. Response modeling of an idealized structural system

In order to provide a realistic set of results for an
inverted pendulum, its dynamic properties in terms of
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Fig. 6. Schematic representation of three transducers in an accelerograph.
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Todorovska [17]).
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vibration frequency, damping and height are extracted from a
single-column bent design example of a highway viaduct (a
part of a freeway). Such a structure is often idealized as a
SDOF oscillator for response computations. This reference
structure and its idealized SDOF system are demonstrated in
Fig. 8. This bridge bent configuration was previously utilized
as a design model by Goel and Chopra [22]. The super-
structure has a total weight of 190.0kN/m, and is supported
on identical bents uniformly spaced at 39.6m. It has a natural
period of Tn ¼ 1.16 s and damping ratio of Dn ¼ 0.05. In the
following, the idealized pendulum is analyzed under different
excitation conditions including vertical, translational, angular
accelerations and tilt. The projected results correspond to
elastic response of the pendulum only, readers are referred to
study by Kalkan and Graizer [18,23] for more details on
inelastic response. In particular, impacts of the following
three forcing functions and their cross-combination on the
response are examined here.

1. Effect of gravity (third term on the left-hand side of
Eq. (13)).

2. Effect of vertical acceleration and gravity in combina-
tion with pendulum’s length and natural frequency of
pendulum.

3. Effect of tilt (a) in combination with vertical accelera-
tion (z00) (second term in the right-hand side of Eq. (13)).

4. Effect of angular acceleration in combination with
pendulum’s length (l1a00) (third term in the right-hand
side of Eq. (13)).

3.2.1. Effect of gravitational acceleration

Gravity factor in the left-hand side of Eq. (13) acts when
pendulum is out of perfect vertical alignment. When
pendulum is out of its vertical position, gravity tends to
destabilize the system by producing lateral force (so called
P–D, or secondary moment effect). Effect of gravity also
diminishes the effective frequency of the pendulum (Eq. (13)).

Fig. 9 compares the response of an ideal pendulum
sensitive to translational motion only (solution (Eq. (2)) of
Eq. (1)) with the response of an inverted pendulum
assuming that the input from translational motion is

combined with the effect of gravity (solution (Eq. (14)) of
Eq. (13)). Note that forcing function does not include
tilting and vertical motion yet. Simple smoothed Dirac
delta function is used as an input. Comparison of system
responses demonstrates that:

	 Amplitudes of displacement demand that includes
gravity effect are slightly higher than that of an ideal
pendulum.
	 Period of free oscillation including gravity effect is

slightly shifted to longer period.

The difference between the ideal response and the response
that takes into account the gravity depends upon the length
of the pendulum. This effect is more significant for
pendulums with shorter lever arm and makes the effect of
period shifting even more visible. The change in vibration
period stems from eroded system stiffness with negative
contribution of the geometric stiffness term (mg/l) due to
gravity (see [18,23] for additional details).

3.2.2. Effect of vertical acceleration

In the next phase, horizontal and vertical acceleration
and tilt from Pacoima Dam record are employed as an
input excitation. First, the effect of vertical acceleration on
the response is examined. Assuming that SDOF assump-
tion holds and vertical vibration and associated axial and
bending moment interaction are ignored, the influence of
vertical excitation on inverted pendulum response depends
upon the following two factors:

	 Length of pendulum arm (ln).
	 Amplitude and sign of vertical ground motion (z00).

Fig. 10 demonstrates the effect of vertical ground motion
on system relative displacement. Evidently, the polarity of
the vertical motion can amplify or de-amplify the response
output of a pendulum (i.e., translation response in this
case). Assuming the same intensity of vertical ground
motion, and depending upon its orientation and phasing,
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vertical motion can either increase or decrease the seismic
demands. As projected in Fig. 10, peak displacement
demand due to horizontal ground motion (including effect
of gravity) only is lower than that of horizontal minus
vertical, but almost same as horizontal plus vertical (there
is still a difference at lower amplitudes between 8 and 20 s).

3.2.3. Effect of pendulum length

Figs. 11(top) and (bottom) manifest the response
outcomes of the two pendulums with same natural period
(Tn ¼ 1.16 s) and damping ratio (Dn ¼ 0.05), yet for
different lengths (9 and 3m). Response of a pendulum
with a shorter lever arm is affected more by a combination
of vertical acceleration and gravity than that with longer
lever arm. Fig. 11(bottom) compares Fourier spectra of
responses corresponding to pendulums with longer and
shorter pendulum arms. Response of pendulum with
shorter arm is influenced more by the vertical acceleration
and gravity. This effect results in shifting of effective period
toward longer periods by an amount of almost 10%. It
happens because time dependent effective frequency
replaces invariant natural frequency of pendulum (on

2) in
left-hand side of Eq. (13).

3.2.4. Effect of ground tilting

Fig. 12 shows the effect of tilt and angular acceleration
on displacement response of the pendulum. As Eq. (13)
implies that long pendulum arm amplifies the inertial force
significantly due to angular acceleration of tilting. The
longer is the pendulum length, the higher is the effect of
angular acceleration. Fig. 12 shows that angular accelera-
tion of the base in case of bridge example results in up to
2.8 times increase in displacement demand. Such dramatic
impacts take place particularly for systems with longer
lever arm [18,23].

3.2.5. Effect of tilting on complete response

As can be seen from Fig. 3, y1 ¼ y1 l1 is the displacement
of the pendulum in the new position of equilibrium. Total

displacement of inverted pendulum from vertical axis (for
small angles a and y) reads:

Y 1 ¼ l1ðaþ y1Þ ¼ l1aþ y1. (16)

ARTICLE IN PRESS

30

20

10

0

-10

-20

-30

D
is

p
la

c
e
m

e
n
t,
 c

m

0 4 8

Time (sec)

12 16 20

Horiz+g

Horiz+g+Vert

Horiz+g-Vert

Bridge Example: T = 1.16 s, L = 9 m, D = 0.05

Fig. 10. Effects of polarity of vertical ground motion on translational

response.

30

20

10

0

D
is

p
la

c
e
m

e
n
t,
 c

m

-10

-20

-30
0 4 8

Time (sec)

12 16 20

L=9 m

L=3 m

Bridge Example: T = 1.16 s, D = 0.05

Effect of Gravity and Vertical

Acceleration with Respect to Length

60

50

40

30

20

F
o
u
ri
e
r 

A
m

p
lit

u
d
e

10

0
0 0.5 1 1.5 2

Period (sec)

2.5 3 3.5 4

L=9m

L=3 m

Fig. 11. Effects of pendulum length on translational response (top-panel)

and Fourier amplitude spectrum (bottom-panel).

75

-75

50

-50

0

D
is

p
la

c
e
m

e
n
t,
 c

m

25

-25

0 4 8 12

Time (sec)

16 20

Bridge Example: T = 1.16 s, L = 9 m, Dn = 0.05

Horiz only

Tilt

Tilt+Tilt Acc

Fig. 12. Coupled effects of tilt and angular acceleration on the response.

V. Graizer, E. Kalkan / Soil Dynamics and Earthquake Engineering 28 (2008) 621–631 629



Author's personal copy

Fig. 13 exhibits the displacement of the pendulum at its
new position of equilibrium y1 and the total displacement
Y1 from the vertical axis. As obvious, total displacement of
an inverted pendulum is noticeably amplified due to
ground tilting. Finally, Fig. 14 exhibits the effect of
pendulum’s length on the translational response of the
pendulum when the input motion includes three compo-
nents of ground shaking (translational, vertical and
angular accelerations and tilt). The three times difference
in length almost doubles the associated displacement
demand. This figure suggests that long inverted pendulums
(most engineering structures) are very susceptible to tilting
of the base that can result in drastic changes on the inertial
force acting on mass and resultant seismic demand.

4. Results and conclusions

In this study, complete equations of motion for three
types of pendulums are provided: mass-on-rod type, mass-

on-spring type and inverted (astatic). These pendulums are
used in seismological measurements and engineering
practice. In contrast to classical simplified equation of the
SDOF oscillator, complete equations represent compre-
hensive and realistic approach for computing response
from seismological instruments and engineering structures
by taking into account not only translational motion, but
also rotations (tilt and torsion).
Parametric testing procedure is applied hereto study the

response of an accelerometer and a single column of a
bridge bent to various combination of forcing functions.
Modeled response of a typical accelerometer has shown
that for typical modern accelerometers (with natural
frequency of 50Hz and higher) used in recording strong
earthquake ground motions, the effects of cross-axis
sensitivity are minimal. However, as the accelerograms
are integrated once and twice to get velocities and
displacements, cross-axis sensitivity may serve as an
additional source of errors in strong-motion data proces-
sing. Tilt of the base of an oscillator results in baseline shift
and introduces long-period errors in data processing.
As compared to a common horizontal pendulum,

response of an inverted pendulum is sensitive to accelera-
tion of gravity. Gravity effect introduces non-linearity into
the differential equations, and results in shift of the
frequency response to lower frequencies (longer periods).
This effect is higher for long-period pendulums with
shorter lever arm.
Vertical acceleration (cross-axis sensitivity) affects the

response of an inverted pendulum when it reaches the level
close to 1.0g. Depending upon the orientation, intense
vertical acceleration may result in amplification or de-
amplification of the seismic demand and of the associated
response.
Inverted pendulum is sensitive to angular acceleration of

tilt. This sensitivity is proportional to the length of a
pendulum. Sensitivity of an inverted pendulum to angular
acceleration should be taken into consideration since it can
produce significant effect especially for long pendulums
idealizing for instance, bridge piers, bents, elevated water
tanks, telecommunication towers, etc.
Common practice of ignoring possible tilting in calculat-

ing seismic demands may result in significant under-
estimating of the effect produced by earthquake ground
shaking. Tilting of the base of an inverted pendulum can in
fact produce large inertial force and associated enhanced
displacement demands to structural systems.
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